Description: If X is a random variable with finite mean μ and variance σ2, then for any value k>0,P(∣X−μ∣≥k)≤k2σ2 Proof: P((X−μ)2≥k2)≤k2E[(X−μ)2] By Markov’s inequality P((X−μ)2≥k2)=P(∣X−μ∣≥k) Proof complete