Description: The roots of wn=1 where w is complex number By de Moivre’s Theorem, wn=cos(nθ)+i.sin(nθ) →wn=1 only happen when θ=2kπ where k∈[0,...,n−1] →wn=1=cos(0+2kπ)+isin(0+2kπ) Then we have n roots: w1=1, w2=en2πi, w3=en4πi,... Generally wn=wn−1×en2π=?