Description:
- To classify the data into 1 of possible catergories
Boolean classification:
- We turn the outcome to ±1 which denotes positive and negative
- Then round up/down to the nearest -1 or 1
- We can then have :
- True positive, y=y^=+1
- True negative, y=y^=−1
- False positive, y=−1 and y^=1 Type 1 Error
- False positive rate = false positive / total real negative
- False negative, y=1 and y^=−1 Type 2 Error
- false negative rate = false negative / total real positive
- Error rate is defined by (false positive + false negative)/ total observations
Binary classification: